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Abstract

A model is developed for the forces acting on a micrometer-size particle
(dust) suspended within a plasma sheath.  The significant forces acting on a single
particle are gravity, neutral gas drag, electric field, and the ion wind due to ion flow
to the electrode.  It is shown that an instability in the small-amplitude dust
oscillation might exist if the conditions are appropriate.  In such a case the forcing
term due to the ion wind exceeds the damping of the gas drag. The basic physical
cause for the instability is that the ion wind force can be a decreasing function of
the relative ion-particle velocity.  However it seems very unlikely the appropriate
conditions for instability are present in typical dusty plasmas.
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1. Introduction
There are recent observations of self-oscillation of dust particles suspended

within the near-sheath or sheath regions of dusty plasmas.1  The oscillations are
perpendicular to the plane of the sheath (vertical) are most noticeable at lower
background pressure.  These observations and subsequent analyses prompted the
present investigation of the forces acting on dusty plasma particles.

The rf (radio frequency, typically 13.56 MHz) fields used to create the
plasma are much too high in frequency to couple directly to the motion of the dust
particles.  In many cases these fields do not even perturb the ion motion, especially
for heavier ions.  The rf field affects the particles only indirectly via the electron
response.  In this work it will be assumed that all the forces acting on the dust
particles have been averaged over the rf cycle.

We will show in this work that there is a possibility of unstable motion when
the ion wind force on the particle is sufficiently strong.  Since the ion wind force is
predominately a decreasing function of the relative velocity of the ions and the
particle, this can lead to unstable oscillatory motion.  Potentially, this would appear
to be an almost universal phenomenon for plasma dust particles.

It should be noted here that there is a tremendous amount of literature
appearing on the problem of dusty plasmas at the current time.  Journals devoted to
plasma physics have several articles per month appearing on plasma dust, especially
in regard to dust collective wave phenomena.  Unfortunately, we cannot afford to
discuss all these studies in this work.

2. Equations of Motion of Plasma Dust Particle
We will consider only plasmas formed in electropositive gases.  A plasma

with a considerable fraction of negative ions would complicate the analysis beyond
what we wish to explore.  Typical plasma dust particles are suspended at the bottom
of the plasma in a nearly planar region, suggesting that gravity has a dominant role.
This is not universally true, but the relevant point is that we can approximate the
forces and motion of the particle as a one-dimensional problem with gravity
defining the coordinate axis.  Consider a system with the z-axis pointed upwards.
Newton’s equation for the dust particle at z is

d d d sh d gas wm z m g q E m z fγ=− + − +�� � , (1)
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where we use “dot notation” to denote time derivatives.  z  is the dust particle
vertical coordinate, dm  is the mass of the dust particle, g  is the acceleration of
gravity, dq  is the charge on the particle, shE  is the plasma sheath electric field
along z  at the position of the particle, gasγ is the damping rate (1/s) due to
collisions with the neutral gas background, and wf  is the “wind force” on the
particle due to ion flow within the non-uniform plasma sheath.  The wind force
includes all forces on the particle due to its presence in a non-uniform plasma
except those isolated in the d shq E  term.  We will use SI units unless otherwise
noted.  It is seen that g  and gasγ  are positive constants, dq  and shE  are both
negative and possibly functions of z  and z� , and wf  is also negative and a function
of z  and z� .  We immediately scale the dust mass out of Eq.(1) to give the equation
of motion (EOM):

d sh gas wz g Q E z Fγ=− + − +�� � (2)

where /d d dQ q m= and /w w dF f m= .

The gas damping is estimated from a simple kinetic argument based on the
velocity of the particle relative to the gas fluid velocity.2  The result for the force
acting on a spherical non-accommodating dust particle is

24
3gas gas gas Tgas df a m n v vπ≈ −

�

� (3)

where dv
�

 is the particle velocity and 1/ 2(8 / )Tgas gasv kT mπ=   is the thermal

velocity of the gas molecules.  We have assumed the gas to be stationary.  The

particle radius is denoted as a .  Evaluating the damping coefficient determines

that

24
3 /gas gas gas Tgas da m n v mγ π= . (4)
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This seems appropriate considering the small size of the dust particles and the

large mean free path of the gas molecules.  We note that the case of complete

accommodation of the gas on the particle gives the identical coefficient.2

2.1. Electric field within the plasma sheath

In order to calculate the electric field we have to develop a reasonably

accurate model for the sheath and pre-sheath region. This could even be time

dependent for some of the situations of interest, but that is difficult to accomplish.

We will use an electrostatic model that incorporates linearization of the charge

densities in terms of the potential field appropriate for the region of the plasma

where the particles tend to accumulate.  For the basic charging mechanism

believed to be operative for the dust particles, we know that the dust can acquire a

negative charge only where electrons are present.  This means that the particles are

not present, or at least not at rest, in the Child-Langmuir region of the sheath

which is nearly devoid of electrons.  The most likely location is the inner sheath or

pre-sheath region where the positive ions and electrons are nearly equal in density.

Thus we will be making approximations that take advantage of the smallness of

the electric field.

All of the analysis in this work can be developed from any basic plasma

physics text.3  The sheath electric field, shE , is the  macroscopic field due to the

statistically averaged motion of the ions and electrons within the plasma in the

absence of the particle.3  The sheath field is a function of only the spatial

coordinate z . The distortion of the local space charge density due to the presence

of the charge on the dust particle is a separate effect.  This Debye shielding

distortion is mostly spherically symmetric about the particle and does not

contribute greatly to the electric field there, especially insofar as the electrons are

concerned.  If the particle lies in a homogeneous isotropic plasma, there are no

forces on it due to the plasma except the stochastic ones leading to Brownian

motion.  Non-spherical corrections are included in the “ion wind” term in the
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EOM.  These have the form of momentum transfer from the scattering ions to the

particle.  Another point is that the flow of charged particles through the sheath

consists of nearly equal fluxes of ions and electrons.  Consequently the momentum

transfer to the particle is dominated by the ions by three orders of magnitude due to

the ion-to-electron mass ratio.

It is fair to ask why the charge on the macroscopic dust particle is not

shielded from the plasma sheath field.  In other words, why do we single out the

d shq E  term in the EOM?  Such shielding exists, but it is a second order effect.

The plasma sheath has a non-zero electric field because the electrons cannot shield

the electrodes (the applied field) from the plasma bulk in that region.  There is

another sheath about the particle itself.  It has been proven elsewhere4  that the

linearization of the Poisson equation with Boltzmann distributions for the charged

particles leads to linear superposition of potentials from the particle sources.  This

means that we should treat these fields as additive.  We separately account for the

weaker field at the position of the particle due to the surrounding, slightly non-

isotropic, particle sheath by separately solving for ion scattering.

Typical sheath solutions utilize the Poisson equation, a Boltzmann

distribution assumption for the electrons, and an approximation for the ion motion

across the sheath.  We will assume that the plasma bulk is a region of uniform

electric potential, which is referenced at zero volts.  A canonical Boltzmann

distribution of electrons at temperature eT  would give:

( ) exp( ( ) / )e B en r n e r kTφ=� �

, (5)

where φ  denotes the potential relative to the Bohm point where the plasma density

is Bn .  The values at the Bohm point are assumed to be close to the bulk

properties; in fact, we treat the Bohm point values as being the limiting values that

we would find in the bulk region of the plasma.  This furnishes a determination of

the electron density throughout the sheath, including the vicinity of the particle
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when present.  However to solve for the sheath field we will replace this by the

electron distribution in the absence of the particle, in which case we have:

( ) exp( ( ) / )e B en z n e z kTφ= (6)

with only a dependence on the vertical coordinate.

The Poisson equation is

( ) ( )i e
o

e
z n nφ

ε
′′ = − − (7)

where e  is the absolute value of the charge on the electron, and in  and en are the

ion and electron number densities.  We already have Eq.(6) for the electron

density.  What we need now is an approximation for the ion density in the sheath.

A fluid description of the ions solves the constant-flux continuity equation

as long as there are no significant sources or sinks of ions within the sheath region,

( ) ( ) ,i i i B Bn z v z n vΦ ≡ = (8)

with iv  being the ion fluid or drift velocity.  At the bulk boundary region this is

typically set to the Bohm velocity, Bv :

1/ 2( / ) .B e iv kT m= (9)

 One should remember that the Bohm velocity is not so much a physical constraint

or condition, but a definition of the spatial point where the ions have that velocity.

We assume that the ion energy is approximately conserved within this region as the
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ions are in free fall across the main part of the sheath.  This is given by the energy-

conservation equation,

21
2
1
2

21
2

( ) ( )

( ) ,

( ) ( ) .

i i B

e

i i i

K z e z m v

kT Bohm

K z m v z

φ+ =

=

=

(10)

iK  is the ion kinetic energy.  We can combine Eqs.(6) -(10) to give:

1/ 22(1 ) exp( / )B
e

o e

en e
e kT

kT
φ φ φ

ε
−�′′ = − − −�

�
. (11)

One can do a first integration of this equation, to give an algebraic relation of shE

and φ , but not a complete integral.  In any case we do not need the first integral in

the following analysis.

At the beginning of this section we discussed a reason for expecting that the

electric field would be small in the location of the dust particles.  This is also the

same as expecting that the change in potential from the bulk will not be very large

compared to the electron temperature in the region of dust localization.  We can

make immediate use of this argument for small / ee kTφ  in finding an approximate

solution of the Poisson equation.  To do so, we linearize the Poisson equation by

expanding in powers of / ee kTφ  on the right hand side of Eq. (11).  With the ion

velocity in the bulk set to the Bohm value, the leading term is quadratic in φ  and

the equation may be solved explicitly.  This is:

2
2
e e

e

kT
φ φ

λ
′′ = −   , (12)
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where the electron Debye radius eλ  is defined by

2
2

o e
e

B

kT

n e

ελ =    . (13)

The solution of Eq.(12) with boundary conditions (b.c.) in the bulk (large z) region

set for zero potential and zero electric field is given in terms of one integration

constant, 1z :

2

2
1

2

3
1

6( ) ,
( )

12( ) .
( )

e e

e e
sh

k T
z

e z z

kT
E z

e z z

λφ

λ

= −
−

= −
−

(14)

1z  is the point of singularity of the approximate solution.  This point should lie far

enough outside the region of interest that it is unimportant.  In general we are

restricted to 1 ( )ez z O λ− > .  Another consideration is that the particle can only

accumulate negative charge where the electron density is non-zero.  Thus we do

not find particles trapped in the high-field regions of the wall sheath.  If we specify

potential b.c. at some point, say at 0z = , which is taken to be the wall at potential

wφ , we can eliminate 1z  in terms of wφ  and have the solutions:

2
1

1
3

1

1

1( ) ,
( / 1)

2 /( ) ,
( / 1)

6 / .

w

sh w

e e w

z
z z

z
E z

z z

z kT e

φ φ

φ

λ φ

=
−

=
−

= − −

(15)
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When written in this form, it is important to remember that wφ  is applied at 0z = .

The singular point lies beyond the wall, outside the domain of the solution.

However one should appreciate that the approximate solution given by Eq.(14)  or

Eq.(15)  is not valid over a sufficient range in distance to reach the actual wall

position.  Thus we should have an alternative method of fixing the location of the

presheath-to-sheath transition region.  Until we have a way of connecting the

approximate solution given by Eq.(15) to the electrode wall, 1z  is just a free

parameter.  In other words our approximate solution and its properties are

translationally indeterminate.

We note the following character of the field that we have constructed.  First

of all the potential and electric field both approach zero as we move into the

plasma bulk.  The electron density becomes constant there, as does the ion density.

The ion fluid velocity approaches the Bohm velocity, corresponding to the ions

having half the electron thermal energy.  This is not really consistent since one

needs an electric field to drive the ion drift motion.  This electric field should be

the ambipolar field set up within the plasma by the small charge separation.

2.2. Ion Momentum Transfer to Dust Particles

The scattering of ions in the screened field about the particle contains the

non-spherical correction to the electric field at the position of the particle.

Although a treatment by particle scattering seems somewhat inconsistent with the

canonical electron distribution and monoenergetic ion distribution assumed

elsewhere, it is really just a calculation of the correction to the isotropic

assumption contained in the isolated Debye-screened particle field.  There is a

constant flow of ions and electrons past the suspended dust particles.  The near

equality of the electron and ion fluxes, the similarity of the interactions (shielded

Coulomb), and the large mass ratio says that ions dominate the plasma forces

applied to the particle.  In this section we obtain an approximation to the rate of
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momentum transfer to the particle (ion wind force) based on scattering from a

Debye interaction.

Consider classical scattering of a directed beam of ions of flux i i in vΦ =

from a stationary particle.  iΦ  is a negative quantity in the geometry we have set

up for the sheath.  After scattering, the ions are deflected to an angle ( , )iv bΘ ,

leaving with nearly same energy as before because of the large dust-to-ion mass

ratio.  The quantity b  is the impact parameter for an individual trajectory.  Each

ion changes the forward momentum of the particle by a small increment

( ) (1 cos( ( , )))d d i i im v m v v b∆ = − Θ    . (16)

Summing over all impact parameters and multiplying by the ion flux, we get an

expression for the force of the ions on the particle:

0

( )

( ) 2 (1 cos( ( , )))

w i i i mt i

mt i i

f m v v

v bdb v b

σ

σ π
∞

= Φ

= − Θ
  . (17)

mtσ  is the momentum transfer cross section.  wf   is a function of the ion velocity,

which in turn is a function of position within the sheath.

The evaluation of ( )mt ivσ  is a problem in scattering theory.  We will use a

numerical fit from the literature for scattering from the shielded potential.5  The

result is:
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2 2 2
1 2

1

2

( ) ln(1 / ) ,
0.9369 ,
61.32 ,

/ ,
/ 4 ,

mt i e

i

d o

v B c c B

c

c

B A K

A eq

σ λ

πε

≈ +
=
=
=
= −

(18)

where iK  is the ion kinetic energy.  In this representation of the cross section, eλ

could be the combined electron and ion shielding length.5

A fully self-consistent study of particle charging and ion momentum

transfer by Choi and Kushner6 predicts cross sections and charging results which

are not too different than used here.  Choi and Kushner note the decrease of ion

wind force with relative ion-particle velocity, but do not speculate on the

possibility of oscillation instability.

At this point all that is needed to solve for the trajectory of the dust particle

in the sheath is known, or at least approximated.  These numerical solutions will be

done after the next section.

2.3. Charging Rate of the Particle

Although we can estimate the charge on the particle due to the local plasma

environment, it is better to calculate the charge from estimates of the rate of

electron and ion impact.  We will assume that the collisions with the particle result

in unit sticking or accommodation on the particle surface.  This is not necessarily

true, and corrections can easily be made if more information is known about the

process.  The charging rate of a particle is written in terms of the incident ion and

electron currents to the surface:

d i eq I I= +� . (19)
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The electron current is easily evaluated in terms of the Boltzmann assumption

about the electron distribution function in the sheath and plasma.  The local density

at position z  is related to the bulk (or Bohm point) density by means of Eq.(6) in

order to simplify the result:

( )
( )

2

2 1
4

2

4

4 ( ) exp ( ( ) /

exp ( ) /

e ed

e Te d e

B Te d B e

I e a

e a n z v e V z kT

e a n v e V V kT

π

π φ

π

= − Φ

= − −

=− −

. (20)

edΦ  is the electron flux to the surface, Tev  is the electron thermal velocity,

1/ 2(8 / )Te e ev kT mπ= , and the potential at the reference point BV  is defined to be

zero.   Note that the only dynamic dependence remaining in eI  is in the surface

potential.  The rise in potential at the dust surface above the local sheath potential

is estimated from the capacity relation of a charged sphere:

1( ) /
4d d

o

V z q aφ
πε

− ≈ (21)

One could treat either dV  or dq  as the unknown property of the particle for the

purposes of numerical solution.

The ion current is not so easily approximated due to the ion orbiting.  There

are many studies of ion capture and scattering from small charged bodies because

the physical situation is the same as that of plasma probe analysis.  Many of these

have been discussed in the context of dust particles.7  We use the microcanonical

distribution function for ions ignoring multiple turning points and absorptive

corrections.8  This limiting case of the complex general theory gives:
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2

2

( ) ( ) 1
( )

( ( )1
( )

i i i
i

d
i

i

e V
I e a n z v z

K z

e V z
e a

K z

π

φπ

� ∆= −�
�

� �−= Φ −� �
�

(22)

V∆  is the fall in potential of an ion as it encounters the particle surface at the local

position in the sheath.  The ion flux, iΦ , is constant through the sheath.  iK  is the

kinetic energy of the ions as given in Eq.(10).

If we sum the electron and ion currents to zero, we obtain a value for the

steady-state charge and potential carried by the particle.

3. Equilibrium Position and Oscillation of the Particle

Once we have the forces acting on the dust particle, we can solve for the

equilibrium position and small displacements about that point.  One complication

is the variation of the charge on the particle with position and velocity.  This is

possible, but the variation is estimated to have a smaller effect than the coupling

introduced by the variations in the ion wind.  We do not explore that effect in this

section, but will include it in the numerical solutions to be given later.  Rewrite the

EOM for the particle, Eq.(2), assuming that the dust charge is constant:

( ) ( ( ) )o
d sh gas w iz g Q E z z F v z zγ=− + − + −�� � � . (23)

Eq.(23)  is now expanded through first order in the particle variables:

( )( ) ( ) ( )

( ( )) ( )
oo

o
d sh o o o o gas

w i
w i o o

i z zz z

z g Q E z z z E z z

dF dv
F v z z z z

dv dz

γ

==

′≈− + + − −

�
+ + − −�

�
�

�� �

�

. (24)
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We will find the equilibrium point and oscillation frequency analytically from this

fully linearized Eq.(24).

We make use of an order-of-magnitude approximation to the momentum

transfer cross section in order to find a simple estimate of the wind effect at the

equilibrium position.  This is, where A  is given in Eq.(18),

2 2/mt iA Kσ � . (25)

From this one can evaluate the derivative in the Eq.(24) for wγ  directly.  The

charge on the particle is given approximately by the capacity combined with an

estimate of the floating potential.  We use these,

4

/

o
d o f

f e

q aV

V LkT e

πε≈

=−
, (26)

to eliminate the unknown charge.   L  is a factor of order unity that would account

for the deviation of fV  from the electron temperature in eV , which could be

found from Eqs.(19)-(22) by setting  dq�  to zero.   For a typical plasma sheath, L

is about 4.

The equilibrium point is the root, oz , of the equation found by setting the

sum of the first, second, and fifth terms on the RHS of Eq.(24) to zero:

( ) ( ( ))o
d sh o w i og Q E z F v z= + . (27)

The general solution (root of a quadratic) is not written out here because of its

detail.  However the solution when the ion wind is negligible compared to gravity

is not so difficult.  This gives oz :
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( )1/ 32 2
1 ( / ) 36 /o e o Bz z kT e L n eg aε ρ≈ + . (28)

ρ  is the mass density of the particle.  We give this relation to show all the direct

scaling of the particle location on particle and plasma properties.  The scaling in 1z

as defined in Eq.(15) is given in terms of wφ  as

1/ 2
1 ( / )( 6 / )e o w Bz kT e n eε φ= − − . (29)

Because of the limitations of our solution for the electric field, this relation is not

generally useful for predicting the absolute position of the particle within the

plasma sheath.

The formula for the oscillation frequency is likewise complicated as

determined by the third and sixth terms on the RHS of Eq.(24).  We again write

down only the limiting form that applies when the ion wind is small compared to

gravity:

( )1/ 62 4 3 23 ( / ) ( / ) ( /36 )
2o B e oa n g L e kT eν ρ ε
π

≈ . (30)

As expected, oν  does not depend on 1z  or wφ .The seventh term on the RHS of

Eq.(24) in z�  is a non-conservative force, which damps (when positive) at a rate we

call wγ .   The expression for wγ  is:

( )( )
o

o

w i
w i i i z z

i d iz z

dF m d
v v

dv m dv
γ σ

=
=

= = Φ . (31)
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The ion flux iΦ  is constant.  The definition is such that a positive wγ  creates

damping of the motion.  There are two terms in the above derivative.  The first is

simple and always leaves a positive contribution to wγ .  The second term requires

us to find the velocity derivative of ( )ivσ .  Since ( )ivσ  is a decreasing function

of iv , it is seen that this term makes a negative contribution to wγ .  This

introduces the possibility of driven oscillations – an instability in the motion.

We now examine this term using the above approximations to obtain an analytic

result.  This gives a negative answer indicating that the ion wind always pushes

towards instability:

2
2 23

( )
i e

w i
d i o

m kT
a L

m K z
γ

�
= − Φ �

�
  . (32)

If we set i eK kT= , which represents a reasonable value of the ion kinetic energy if

we are near the Bohm point, we greatly simplify the expression for the wind-

damping coefficient.  We can take the ratio of Eq.(32) to the gas damping

coefficient given in Eq.(4) to develop a condition for absolute instability or

growth:

29 1
4

w i

gas gas

Lγ
γ π

Φ
≈ >

Φ
(33)

gasΦ  is the thermal flux of the background gas.  We see that only a highly ionized

gas with large particle charge can be unstable to particle oscillation.  This seems

unlikely.

4. Numerical Solutions for Particle Motion
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The above analytic estimates of the damping and instability are not

completely general for examining the particle motion.  In this section we give

numerical solutions of the particle trajectories while trapped within a plasma

sheath.  Basically we are just solving Eqs.(1) or (2) for the particle trajectory,

including  the electric field developed in Section 2.1, the wind force developed in

Section 2.2, and the additional EOM for the charging rate developed in Section

2.3.

The first reported case of particle self-oscillation1 or instability estimated the
following dust and plasma conditions:

3

3

0.5 8/
2.5
/ 1.0

1.0 /
40

5

B

e

i

n e cm

a m

kT e eV

gm cm

m amu

Pgas mTorr

µ

ρ

≈
=

≈

=
=

=

We have decreased the plasma density by a factor of two as an estimate of the

sheath density at the Bohm point compared to the measured bulk value.  The above

give the analytical estimates:

1050
16.2

( ) 0.82
( ) 1.32
/ 6940

e

o

o

i o

d

m

Hz

z V

K z eV

q e

λ µ
ν
φ

=
=

= −
=

=

The electron Debye length is larger than their reported mean interparticle

separation in the crystalline structure, but this may be due to the influence of the

ion Debye length to shorten the shielding length in the crystal.  More relevant is
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the oscillation frequency, which is the right order. The potential and ion kinetic

energy at the equilibrium point are reasonably larger than the Bohm values at the

start of the ion fall through the sheath. A trajectory for a perturbed oscillation with

these conditions is shown in Fig. 1.  For these circumstances, the wind acceleration

is 20.15 /m s− , small compared to gravity.  The wind damping coefficient is

likewise small, five orders of magnitude smaller than the gas damping.  In Figure 2

we show the variation of the particle charge during the oscillation.  The result is

converging to a value close to the simple estimate given in the above table.
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Figure 1. Oscillation of a perturbed particle in conditions similar to those reported

in the literature.1 The damping is due to gas collisions.  The frequency is close to

the value predicted by Eq. (33), namely 16.2 Hz.
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Figure 2. Time dependence of the particle charge in electron units for the trajectory

shown in Figure 1.  To be noted by comparison with Figure 1 is that the variation

is proportional to the position and not the velocity; the latter would be required for

this variation to create an instability in the motion.
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In other experiments,9 we have the estimates of the relevant particle and

plasma conditions with the density again reduced by a factor of two:
3
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The above gave estimates for the dust properties:
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with a wind acceleration of 246 /m s− , and wγ  three orders of magnitude smaller

than the gas damping.  The oscillation is shown in Figure 3. We can modify the

conditions to make the frequency more resonant with 60 Hz line frequency, which

is observed in the experiments.  For example, reducing the plasma density by a

factor of two gives the trajectory shown in Figure 4. The wind acceleration is
226 /m s−  in this case and the /w gasγ γ  ratio is order 410− .  However these

experiments were conducted with a capacitively-coupled rf drive, which we

suspect does not resemble the theoretical model for the electric field developed

here.
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Figure 3. Oscillation of a perturbed particle in conditions of an experiment.9   The

damping is due to gas collisions.  The frequency is too large compared to the

observed near-resonance with 60 Hz line frequency.  The vertical displacement is

not predictive.
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Figure 4. Oscillation of a perturbed particle under conditions shown in Fig. 4

except that the plasma density is lowered by a factor of two. The damping is due to

gas collisions.  The frequency is closer to the observed near-resonance with 60 Hz

line frequency.  The vertical displacement is not predictive.
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5. Conclusions

It is apparent that the model developed here does not predict spontaneous

oscillations, or instability, of the dust particles.  We do make fairly good

predictions of the natural oscillation frequency and gas damping of the motion

under circumstances where the plasma properties are reasonably well known and

potentially in harmony with the model assumptions.
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Appendix
An alternative solution for the electric field in the sheath-bulk region can

determined as follows.  Instead of assuming that the ion density in the Poisson
equation is controlled by the flux (Eq.(8)) and energy conservation (Eq.(10)), we
assume that the ion density is constant within this region.  This is not a baseless
assumption.  The region of the Bohm point may in fact be collisional, in which case
the conservation of ion energy equation will not be valid.  A collisional, canonical,
ion distribution would predict a density increase where the potential begins to drop
in the sheath.  The free-fall limit predicts a density decrease in the same case.  The
intermediate constant density assumption leads to a linearized Poisson equation:

( ) 2
11 exp( / )B

e
o e

en
e kTφ φ φ

ε λ
′′ = − − ≈   . (1)

This has the immediate solutions defined in terms of the wall potential b.c.:

( ) exp( / )
( ) / exp( / )

w e

sh w e e

z z

E z z

φ φ λ
φ λ λ

= −
= −

, (2)

with the integration constants chosen such that the large-z limits are vanishing in
the plasma bulk.  The particle equilibrium point (without the wind term) and
oscillation frequency are just:

log( / )
1

2

o
o e d w d e

o
e

z q gm

g

λ φ λ

ν λπ

=

=
(3)

The EOM for the particle motion require much the same analysis as in the text.
However the simpler nature of the above formula (compare Eq.(30)) suggests that it
may be of use in analyzing the oscillation frequency.  Of course the absolute
position of the particle is not necessarily determined accurately with the above.  For
the two experimental cases discussed in the text, we get 15 and 49 Hz, not too far
from the observed oscillation frequencies.
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